Minggu, 06 Desember 2009

Hukum Newton

HUKUM NEWTON I

HUKUM NEWTON I disebut juga hukum kelembaman (Inersia).
Sifat lembam benda adalah sifat mempertahankan keadaannya, yaitu keadaan tetap diam atau keaduan tetap bergerak beraturan.

DEFINISI HUKUM NEWTON I :
Setiap benda akan tetap bergerak lurus beraturan atau tetap dalam keadaan diam jika tidak ada resultan
gaya (F) yang bekerja pada benda itu, jadi:

S F = 0 a = 0 karena v=0 (diam), atau v= konstan (GLB)

HUKUM NEWTON II

a = F/m

S F = m a

S F = jumlah gaya-gaya pada benda
m = massa benda
a = percepatan benda

Rumus ini sangat penting karena pada hampir semna persoalan gerak {mendatar/translasi (GLBB) dan melingkar (GMB/GMBB)} yang berhubungan dengan percepatan den massa benda dapat diselesaikan dengan rumus tersebut.

HUKUM NEWTON III

DEFINISI HUKUM NEWTON III:

Jika suatu benda mengerjakan gaya pada benda kedua maka benda kedua tersebut mengerjakan juga gaya pada benda pertama, yang besar gayanya = gaya yang diterima tetapi berlawanan arah. Perlu diperhatikan bahwa kedua gaya tersebut harus bekerja pada dua benda yang berlainan.

F aksi = - F reaksi

  • Gaya Gesekan

Koefisien Gesekan Statik dan Kinetik

Gaya kontak yang terjadi antara benda dengan bidang yang bersentuhan disebut gaya gesekan. Gaya gesekan arahnya berlawanan dengan arah gerak / arah gaya yang diberikan. Gaya gesekan ada 2, yaitu statis dan kinetis. Gesekan kinetis terjadi saat benda bergerak atau benda akan bergerak. Nilai gesekan statis selalu sama nilai gaya yang diberikan / gaya yang terjadi, hingga benda tepat akan bergerak. Saat benda tepat akan bergerak, gesekan statis diberi nilai maksimal dan gaya yang diberikan / gaya yag terjadi bernilai minimal. Saat benda sedang bergerak, maka nilai gesekan kinetiknya lebih kecil daripada nilai gesekan statis.

Perhatikan bahwa hubungan antara gaya normal dan gaya gesekan pada persamaan di atas hanya untuk besarnya saja. Arah kedua gaya tersebut selalu saling tegak lurus satu dengan yang lain, sebagaimana diperlihatkan pada gambar di bawah ini. Berikut ini keterangan untuk gambar di bawah : fk adalah gaya gesekan kinetik, fs adalah gaya gesekan statik, F adalah gaya tarik, N adalah gaya normal, w adalah gaya berat, m adalah massa, g adalah percepatan gravitasi.

Contoh Soal 1 :

Sebuah buku berada dalam keadaam diam di atas meja yang permukaannya datar. Koofisien gesekan statik adalah 0,4 dan koofisien gesekan kinetik adalah 0,30. Jika massa buku tersebut adalah 1 kg, berapakah Gaya minimum yang diberikan agar buku itu mulai bergerak ? anggap saja percepatan gravitasi (g) = 10 m/s2

Panduan Jawaban :

Terlebih dahulu kita hitung besar Gaya Normal (N).

N = w = m g = (1 kg) (10 m/s2) = 10 kg m/s2 = 10 N.

Setelah memperoleh besar Gaya Normal, selanjutnya kita hitung besar gaya gesek statis (fs).

Besar gaya gesek statis adalah 4 N. Agar buku dapat bergerak, maka gaya tarik minimum yang diberikan harus lebih besar dari 4 Newton (agar benda mulai bergerak maka F > fs)

Contoh Soal 2 :

Sebuah balok bermassa 10 kg diletakkan pada bidang miring sebagaimana tampak pada gambar di bawah. Jika sudut yang dibentuk antara bidang miring dengan permukaan lantai sebesar 30o dan koofisien gesekan kinetik adalah 0,4, berapakah gaya gesekan kinetis yang bekerja pada permukaan balok dan bidang miring ?

Panduan Jawaban

  • Gaya Gravitasi
Newton pun mencetuskan Hukum Gravitasi Universal dan mengumumkannya pada tahun 1687, hukum yang sangat terkenal dan berlaku baik di indonesia, amerika atau afrika bahkan di seluruh penjuru alam semesta. Hukum gravitasi Universal itu berbunyi demikian :

Semua benda di alam semesta menarik semua benda lain dengan gaya sebanding dengan hasil kali massa benda-benda tersebut dan berbanding terbalik dengan kuadrat jarak antara benda-benda tersebut.

Secara matematis, besar gaya gravitasi antara partikel dapat ditulis sbb :

Fg adalah besar gaya gravitasi pada salah satu partikel, m1 dan m2 adalah massa kedua partikel, r adalah jarak antara kedua partikel.

G adalah konstanta universal yang diperoleh dari hasil pengukuran secara eksperimen. 100 tahun setelah eyang Newton mencetuskan hukum Gravitasi Universal, pada tahun 1978, Henry Cavendish berhasil mengukur gaya yang sangat kecil antara dua benda, mirip seperti dua bola. Melalui pengukuran tersebut, Henry membuktikan dengan sangat tepat persamaan Hukum Gravitasi Universal di atas. Perbaikan penting dibuat oleh Poyting dan Boys pada abad kesembilan belas. Nilai G yang diakui sekarang = 6,67 x 10-11 Nm2/kg2

  • Hukum Kepler

Hukum I Kepler

Lintasan setiap planet ketika mengelilingi matahari berbentuk elips, di mana matahari terletak pada salah satu fokusnya.


Kepler tidak mengetahui alasan mengapa planet bergerak dengan cara demikian. Ketika mulai tertarik dengan gerak planet-planet, eyang Newton menemukan bahwa ternyata hukum-hukum paman Kepler ini bisa diturunkan secara matematis dari hukum gravitasi universal dan hukum gerak Newton. Eyang Newton juga menunjukkan bahwa di antara kemungkinan yang masuk akal mengenai hukum gravitasi, hanya satu yang berbanding terbalik dengan kuadrat jarak yang konsisten dengan Hukum Kepler.

Perhatikan orbit elips yang dijelaskan pada Hukum I Kepler. Dimensi paling panjang pada orbit elips disebut sumbu mayor alias sumbu utama, dengan setengah panjang a. Setengah panjang ini disebut sumbu semiutama alias semimayor (sambil lihat gambar di bawah ya).


F1 dan F2 adalah titik Fokus. Matahari berada pada F1 dan planet berada pada P. Tidak ada benda langit lainnya pada F2. Total jarak dari F1 ke P dan F2 ke P sama untuk semua titik dalam kurva elips. Jarak pusat elips (O) dan titik fokus (F1 dan F2) adalah ea, di mana e merupakan angka tak berdimensi yang besarnya berkisar antara 0 sampai 1, disebut juga eksentrisitas. Jika e = 0 maka elips berubah menjadi lingkaran. Kenyataanya, orbit planet berbentuk elips alias mendekati lingkaran. Dengan demikian besar eksentrisitas tidak pernah bernilai nol. Nilai e untuk orbit planet bumi adalah 0,017. Perihelion merupakan titik yang terdekat dengan matahari, sedangakan titik terjauh adalah aphelion.

Pada Persamaan Hukum Gravitasi Newton, telah kita pelajari bahwa gaya tarik gravitasi berbanding terbalik dengan kuadrat jarak (1/r2), di mana hal ini hanya bisa terjadi pada orbit yang berbentuk elips atau lingkaran saja.


Hukum II Kepler

Luas daerah yang disapu oleh garis antara matahari dengan planet adalah sama untuk setiap periode waktu yang sama.

Hal yang paling utama dalam Hukum II Kepler adalah kecepatan sektor mempunyai harga yang sama pada semua titik sepanjang orbit yang berbentuk elips.

Hukum III Kepler

Kuadrat waktu yang diperlukan oleh planet untuk menyelesaikan satu kali orbit sebanding dengan pangkat tiga jarak rata-rata planet-planet tersebut dari matahari.

Jika T1 dan T2 menyatakan periode dua planet, dan r1 dan r2 menyatakan jarak rata-rata mereka dari matahari, maka

Eyang Newton juga menunjukkan bahwa Hukum III Kepler juga bisa diturunkan secara matematis dari Hukum Gravitasi Universal dan Hukum Newton tentang gerak dan gerak melingkar. Sekarang mari kita tinjau Hukum III Kepler menggunakan pendekatan eyang Newton.

Terlebih dahulu kita tinjau kasus khusus orbit lingkaran, yang merupakan kasus khusus dari orbit elips. Semoga dirimu belum melupakan Hukum Newton dan pelajaran Gerak Melingkar…

Kita tulis kembali persamaan Hukum II Newton :

Pada kasus gerak melingkar beraturan, hanya terdapat percepatan sentripetal, yang besarnya adalah :

Kita tulis kembali persamaan Hukum Gravitasi Newton :

Sekarang kita masukan persamaan Hukum Gravitasi Newton dan percepatan sentripetal ke dalam persamaan Hukum II Newton :

m1 adalah massa planet, mM adalah massa matahari, r1 adalah jarak rata-rata planet dari matahari, v1 merupakan laju rata-rata planet pada orbitnya.

Waktu yang diperlukan sebuah planet untuk menyelesaikan satu orbit adalah T1, di mana jarak tempuhnya sama dengan keliling lingkaran,2phir1. Dengan demikian, besar v1 adalah :

Kita masukan persamaan v1 ke dalam persamaan di atas :

Misalnya persamaan 1 kita turunkan untuk planet venus (planet 1). Penurunan persamaan yang sama dapar digunakan untuk planet bumi (planet kedua).

T2 dan r2 adalah periode dan jari-jari orbit planet kedua. Sekarang coba anda perhatikan persamaan 1 dan persamaan 2. Perhatikan bahwa ruas kanan kedua persamaan memiliki nilai yang sama. Dengan demikian, jika kedua persamaan ini digabungkan, akan kita peroleh :

Kita juga bisa menurunkan persamaaan untuk menghitung besarnya periode gerak planet (T) dengan cara lain. Pertama terlebih dahulu kita turunkan untuk kasus gerak melingkar.

Sebelumnya kita telah mensubtitusikan persamaan Hukum Gravitasi Newton dan percepatan sentripetal ke dalam persamaan Hukum II Newton :

Pada pembahasan mengenai gerak melingkar beraturan, kita mempelajari bahwa laju v adalah perbandingan jarak tempuh dalam satu kali putaran dengan periode (waktu yang dibutuhkan untuk melakukan satu kali putaran), yang secara matematis dirumuskan sebagai berikut :

Kita subtitusikan nilai v pada persamaan laju untuk orbit lingkaran, ke dalam persamaan T :

Pada persamaan ini tampak bahwa periode dalam orbit lingkaran sebanding dengan pangkat 3/2 dari jari-jari orbit. Eyang Newton menunjukkan bahwa hubungan ini juga berlaku untuk orbit elips, di mana jari-jari orbit lingkaran (r) diganti dengan setengah sumbu utama a

DATA ASTRONOMI

1 komentar:

  1. Casinos Near Casinos in Las Vegas, NV - MapYRO
    Best Casinos in Las Vegas. 1. Casinos Near Casinos & Resorts. 익산 출장마사지 1. Casinos Near Casinos & Resorts. 동해 출장마사지 1. Casinos 남양주 출장샵 Near Casinos and Resorts. 2. 과천 출장마사지 Casinos Near Casinos & 포항 출장샵 Resorts

    BalasHapus